Controlled rod cell ablation in transgenic Xenopus laevis.

نویسندگان

  • Lisa M Hamm
  • Beatrice M Tam
  • Orson L Moritz
چکیده

PURPOSE Because of their high cone/rod ratio, Xenopus laevis may be a useful system for examining rod-cone interactions during retinal degeneration and mechanisms that underlie secondary cone degeneration. The authors developed an inducible model of retinitis pigmentosa (RP) in X. laevis to investigate these issues. METHODS The authors generated transgenic X. laevis that express a modified caspase-9 (iCasp9) under the control of the X. laevis rod opsin promoter. iCasp9 is activated by the compound AP20187, resulting in an apoptotic cascade. Confocal microscopy, Western blot analysis, and electroretinography (ERG) were used to determine the effects of AP20187 on transgenic retinas. RESULTS AP20187 induced rod cell apoptosis in transgenic tadpoles and postmetamorphic frogs. Longitudinal results indicate rod cell death led to cone cell dysfunction within 3 months; however, cone function was reinstated after 6 months. Returning cone function may be associated with increased numbers of morphologically normal cone cells and thickening of the inner nuclear layer. CONCLUSIONS These studies indicate that X. laevis may be a useful system for examining cone dysfunction associated with rod death in RP and longer term regeneration of cone responses. This inducible model of RP is unique in that rod death proceeds through a well-understood mechanism, rod death can be carefully controlled to occur at any stage of development, and the stimulus for rod death can be removed at any time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone degeneration following rod ablation in a reversible model of retinal degeneration.

PURPOSE Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reve...

متن کامل

Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.

PURPOSE To investigate the pathogenic mechanisms that underlie retinal degeneration induced by the rhodopsin mutation P23H in a Xenopus laevis model of RP. METHODS Transgenic X. laevis were generated that expressed the rhodopsin mutants rhoP23H and rhoP23H/K29R (a variant incapable of transducin activation). Using quantitative dot blot assay, transgenic rhodopsin levels and the extent of reti...

متن کامل

Neurobiology of Disease Dark Rearing Rescues P23H Rhodopsin-Induced Retinal Degeneration in a Transgenic Xenopus laevis Model of Retinitis Pigmentosa: A Chromophore-Dependent Mechanism Characterized by Production of N-Terminally Truncated Mutant Rhodopsin

To elucidate the molecular mechanisms underlying the light-sensitive retinal degeneration caused by the rhodopsin mutation P23H, which causes retinitis pigmentosa (RP) in humans, we expressed Xenopus laevis, bovine, human, and murine forms of P23H rhodopsin in transgenic X. laevis rod photoreceptors. All P23H rhodopsins caused aggressive retinal degeneration associated with low expression level...

متن کامل

Identification of an Outer Segment Targeting Signal in the Cooh Terminus of Rhodopsin Using Transgenic Xenopus laevis

Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod...

متن کامل

A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.

To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2009